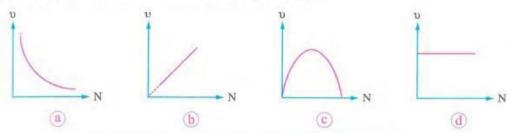
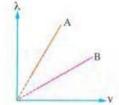

First Choose the correct answer (1:15)

	Amplitude (A) cm	Frequency (v) Hz
(a)	6	2.5
b	6	0.4
©	3	1.25
d	3	0.8

 $\lambda(m)$

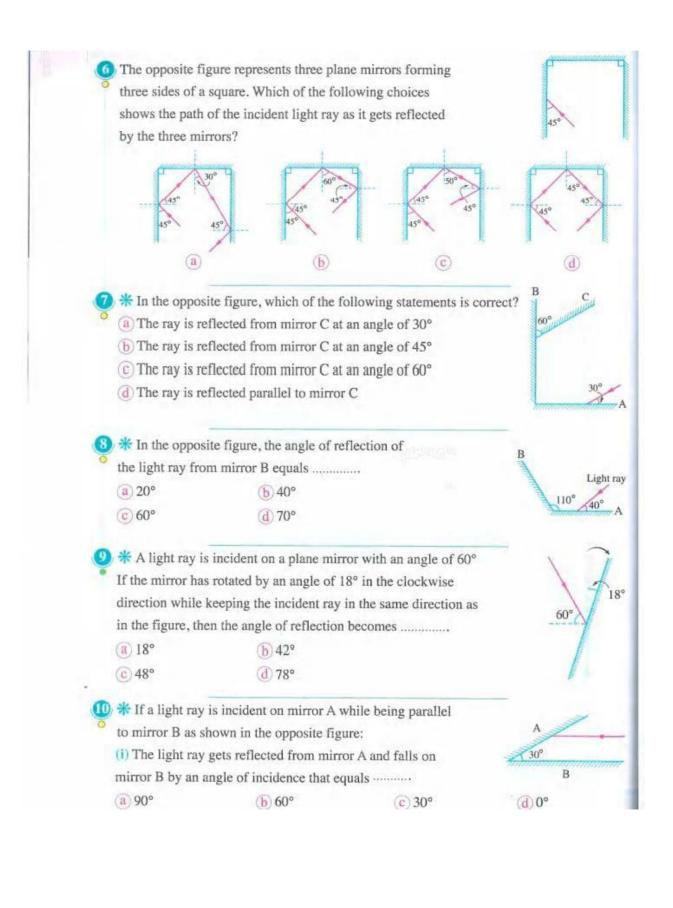
2.75



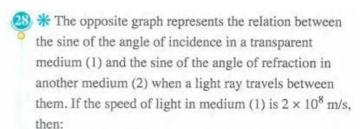

3 The ratio between periodic time and frequency of an oscillating object equals $\frac{1}{289}$ s², so the number of oscillations that are produced in 20 s equals oscillations.

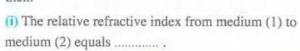
v(Hz)

(b) Which of the following graphs represents the relation between the frequency (v) for a simple pendulum and its number of oscillations (N)?


$$T_A > T_B$$

$$T_A < T_B$$


©
$$v_A > v_B$$


$$dv_A = v_B$$

- - (a) 10 cm
- (b) 12.5 cm
- © 20 cm
- d 50 cm

ent on the boundary s	urface between two me	dia. If the angle of
medium (1) and the a	angle of refraction is 30	° in medium (2),
ive index from mediu	m (1) to medium (2) eq	uals ······
b √3	©√2	$\frac{1}{2}$
e shows a light ray fal	ling from medium (1)	
		30° Medium
om medium (1) to med	lium (2) equals	
(b) 1,48		
d 1.22		
cident from air on the	surface of a glass slab	at an angle of 52°.
	ive index from medium	e shows a light ray falling from medium (1) arface with medium (2), so the relative om medium (1) to medium (2) equals

(b) 0.75

© 1.93

sin o

0.6

0.45

0.3

0.15

(ii) The speed of light in medium (2) equals

(a)
$$2.33 \times 10^8$$
 m/s

(b)
$$2 \times 10^8$$
 m/s

(c) 1.5 × 10⁸ m/s

(d) 1.33×10^8 m/s

sin (

When a ray of light that has wavelength λ and frequency υ moves from air into another transparent medium of refractive index n, the frequency and the wavelength of that light in the transparent medium will be

	The frequency of the light in the medium	The wavelength of the light in the medium
(a)	υ	λ
b	υ	$\frac{\lambda}{n}$
©	$\frac{\upsilon}{n}$	λn
(d)	vn	λ

- 40 A red light ray is incident from air on the surface of glass. If the wavelength of red light in air is 7000 Å and the refractive index of glass is 1.5, the wavelength of red light in glass is approximately
 - (a) 10500 Å
- (b) 8564 Å
- © 5543 Å

(d) 4667 Å

- * A ray of light whose wavelength is 700 nm in air and 526 nm in water travels in water with a speed of (Take: $c = 3 \times 10^8 \text{ m/s}$)
 - (a) 2.25×10^8 m/s (b) 2×10^8 m/s
- (c) 1.89 × 10⁸ m/s
- (d) 1.76 × 10⁸ m/s